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Symbols

A n x n tridiagonal system

,4 n x n matrix

a, b real solutions of equation (15)

d right side of the tridiagonal system

E n x 2(p - 1) matrix

E T transpose of matrix E

m order of the submatrix (m = n/p)

n order of the matrix

n I number of right sides of the system

p number of processors

V n x 2(p - 1) matrix

vectors

V i, wi vectors

x solution of the tridiagonal system

._ n x 1 vector

x, x notation introduced in accuracy analysis

Y n x 2(p - 1) matrix

Z 2(p - 1) x 2(p - 1) matrix

t_ communication latency (start time)

13 transmission rate (bandwidth)

AA AA = VE T

_, off-diagonal elements of matrix A

kt diagonal elements of matrix A

0 -1 inverse of matrix 0

Abbreviations:

ADI

CFD

MFLOPS

MIMD

PDD

PDE

RCD

RISC

SIMD

SOR

SPP

OER

STT

alternating direction implicit

computational fluid dynamics

million floating-point operations per second

multiple-instruction multiple-data

parallel diagonal dominant

partial differential equation

recursive doubling

reduced instruction set computer

single-instruction multiple-data

successive over relaxation

simple parallel prefix

odd-even reduction

symmetric Toeplitz tridiagonal

iii





Abstract

The parallel diagonal dominant (PDD) algorithm is an efficient tridiagonal

solver. This paper presents for study a variation of the PDD algorithm, the reduced

PDD algorithm. The new algorithm maintains the minimum communication provided

by the PDD algorithm, but has a reduced operation count. The PDD algorithm also

has a smaller operation count than the conventional sequential algorithm for many

applications. Accuracy analysis is provided for the reduced PDD algorithm for sym-

metric Toeplitz tridiagonal (STT) systems. Implementation results on Langley's Intel

Paragon and IBM SP2 show that both the PDD and reduced PDD algorithms are effi-
cient and scalable.

1.0. Introduction

Distributed-memory parallel computers dominate

today's parallel computing arena. These machines, such

as the Kendall Square KSR-1, Intel Paragon, TMC

CM-5, and the recently announced IBM SP2 and Cray

T3D concurrent systems, successfully deliver high-

performance computing power for solving certain of the

so-called "grand-challenge" problems (ref. 1). Despite

initial success, parallel machines have not been widely

accepted in the production engineering environment. On

a parallel computing system, a task has to be partitioned

and distributed appropriately among processors to reduce
communication cost and to achieve load balance. More

importantly, even with careful partitioning and mapping,
the performance of an algorithm might still be unsatisfac-

tory because conventional sequential algorithms may be

serial in nature and may not be implemented efficiently

on parallel machines. In many cases, new algorithms
must be introduced to increase parallelism and to take

advantage of the computing power of the scalable paral-
lel hardware.

Solving tridiagonal systems is a basic computational

kernel of many computational fluid dynamics (CFD)

applications. Tridiagonal systems appear in multigrid
methods, alternating direction implicit (ADI) method,
wavelet collocation method, and in-line successive over

relaxation (SOR) preconditioners for conjugate gradient

methods (ref. 2). In addition to solving partial differential

equations (PDE), tridiagonal systems also arise in digital

signal processing, image processing, stationary time
series analysis, and spline curve fitting (ref. 3). One

direct motivation for developing an efficient kernel for

solving tridiagonal systems at the National Aeronautics

and Space Administration (NASA) is that the implicit

systems of compact schemes (ref. 4), which are relatively

new finite-difference schemes widely used in production

codes at Langley Research Center and Ames Research

Center, are tridiagonal.

Intensive research has been carried out on the devel-

opment of efficient parallel tridiagonal solvers. Many

algorithms have been proposed (refs. 5, 6, and 7), includ-

ing the recursive doubling reduction method (RCD)

developed by Stone (ref. 8) and the cyclic reduction or

odd-even reduction method (OER) developed by Hock-

ney (ref. 9). In general, parallel tridiagonal solvers
require global communications, which makes them inef-

ficient on distributed-memory architectures. Recently,

we have taken a new approach: to increase parallel per-

formance by introducing a bounded numerical error.

Two new algorithms, namely the parallel diagonal domi-

nant (PDD) algorithm (ref. 2) and the simple parallel pre-

fix (SPP) algorithm (ref. 10), have been proposed for

multiple-instruction multiple-data (MIMD) and single-

instruction multiple-data (SIMD) machines, respectively.
These two algorithms take advantage of the fact that trid-

iagonal systems arising in compact schemes are diagonal

dominant. Backed by rigorous accuracy analyses, the

algorithms truncate communication and computation

without degrading the accuracy of the calculations.

In this paper, a new algorithm, the reduced PDD

algorithm, is studied based on the same approach:
increasing parallel performance by introducing a

bounded numerical error. The reduced PDD algorithm, a
variation of the PDD algorithm, maintains the minimum

communication provided by the PDD algorithm, but has

a reduced operation count. The reduced PPD algorithm

also has a smaller operation count than the conventional

sequential algorithm for many applications. The empha-

sis of this study is on implementation issues and perfor-
mance comparisons of the PDD and reduced PDD

algorithm. Most of the theoretical results, including the

introduction of the PDD and reduced PDD algorithm,
can be found in reference 2.

This paper is organized as follows. Section 2 pro-

vides the background of the parallel PDD algorithm. Sec-

tion 3 introduces the new algorithm, the reduced PDD

algorithm. Section 4 gives an accuracy analysis for the

reduced PDD algorithm. Experimental results on the

Intel Paragon and IBM SP2 multicomputer are presented

in section 5. Performance comparison of the newly



proposedalgorithmandotherexistingalgorithms,andof
thetwoparallelplatformsarealsodiscussedin thissec-
tion.Section6providesconcludingremarks.

2.0. Parallel Diagonal Dominant (PDD)

Algorithm

A tridiagonal system is a linear system of equations

Ax = d (1)

where x=(x I ..... xn) T and d=(d 1..... dn) T are

n-dimensional vectors and A is a diagonally dominant

tridiagonal matrix with order n:

bo Co

a I b 1 c 1

A _- = [a i, bi, ci] (2)

To solve equation (1) efficiently on parallel comput-

ers, we partition A into submatrices. We assume that

n = pm, where p is the number of processors available.
The matrix A in equation (1) can be written as

A = ,4+AA

where ,4 is a block diagonal matrix with diagonal sub-

matrices Ai(i = 0 ..... p - 1). The submatrices

Ai(i = 0 ..... p - 1) are m x m tridiagonal matrices. Let ei
be a column vector with its ith (0 < i < n- 1) element

being one and all the other entries being zero. We have

F
AA

Lamem , Cm- lem - 1' a2me2m ' C2m- le2m- 1' ""'

T
era- 1

T
e m

C(p_ l)m- le(p-l)m-I 1
= VE T

T
e(p - 1)ra

e_p_ I)m

where both V and E are n x 2(p - 1) matrices. Thus, we
have

A = A+VE T

Based on the matrix modification formula originally

defined by Sherman and Morrison (ref. 11) for rank-one

2

changes, and assuming that all Ai's are invertible, equa-
tion (1) can be solved by

x = A-Id = (A + VET)-ld (3)

x = _4-1d-_4-1V(I+ET_4-1V)-IET_I-ld

Let

(4)

AJ = d (5)

_Y = V (6)

h = ErJ (7)

Z = 1 + E TY (8)

Zy = h (9)

ax = r'y (lO)

Equation (4) becomes

x = _-Ax (11)

In equations (5) and (6), ._ and Y are solved by the

lower/upper (LU) decomposition method. By the struc-

ture of _ and V, this is equivalent to solving

AiI_(i),v(i),w(i)]= Id(i),aimeo, c(i+l)m_lem_lt (12)

i = 0 ..... p - 1. Here ,_(i) and d (i) are the ith block of
and d, respectively, and v (i), w (i) are possible nonzero

column vectors of the ith row block of Y. Equation (12)

implies that we only need to solve three linear systems of

order m with the same LU decomposition for each i

(i=0 ..... p- 1).

Solving equation (9) is the major computation

involved in the conquer part of our algorithms. Different

approaches have been proposed for solving equation (9),
which results in different algorithms for solving tridiago-

nal systems (ref. 5). The matrix Z in equation (9) has the
form

Z

1 w (0) 0-I

v(1) 1 0 w(01)

0

1 0 w(oP - 2

0 V(op- 1) 1



wherev(i), W (i) for i = 0 ..... p - 1 are solutions of equa-

tion (12) and the l's come from the identity matrix I.

Here and throughout, the subindex indicates the compo-
nent of the vector. In practice, especially for a diagonally

dominant tridiagonal system, the magnitude of the last

component of v(i), v_')_l and the first component of
w (i), W(oi) may be smaller than machine accuracy when

p _<n. (See section 4 for detailed accuracy analysis.)

In this case, W(oi) and v(i) can be dropped, and Zm-1

becomes a diagonal block system consisting of

(p - 1)2 x 2 independent blocks. Thus, equation (9) can

be solved efficiently on parallel computers, which leads

to the highly efficient parallel diagonal dominant (PDD)
algorithm.

Using p processors, the PDD algorithm consists of

the following steps:

Step 1. Allocate Ai, d0), and elements aim, c(i + l)m - 1 to
the ith node, where 0 < i < p - I.

Step 2. Solve equation (12). All computations can be

executed in parallel on p processors.

Step 3. Send ._(i), V(Oi) from the ith node to the (i - 1)th

node, for i = 1..... p - 1.

Step 4. Solve

;0wil/ /m- 1 Y2i = - 1

-(i+ l)
i+ l) 1 Y2i+ l X 0

in parallel on the ith node for 0 < i < p - 2. Then

send Y2i from the ith node to the (i + 1 ) node, for

i=0 ..... p-2.

Step 5. Compute equations (10) and (11). We have

Ax(i) = [v(i),w(i)] l Y2i-Y2il I

x(i) = ._(i)_ Ax(i)

For each of these calculations, there are only two neigh-

boring communications.

3.0. Reduced PDD Algorithm

The PDD algorithm has efficient communications. It

achieves good load balance and is a good choice for solv-

ing a large single system. However, for systems with

multiple fight sides, the PDD algorithm is competitive

only with the conventional sequential algorithm, the

Thomas algorithm (ref. 12). It is not necessarily superior

to the Thomas algorithm for compact schemes and other

applications when the order of the matrix is much larger

than the number of processors. The PDD algorithm has

a larger operation count than the Thomas algorithm.

However, for a sufficiently large number of processors
and an efficient hardware platform, the computation/

communication ratio of the PDD algorithm is high

enough to render its performance comparable to the best

case performance of the Thomas algorithm which was

achieved by solving multiple right-hand sides simulta-

neously. The reduced PDD algorithm is proposed to fur-

ther enhance computation because it has the same

communication cost as the PDD algorithm but has a

reduced operation count. For some applications, the

reduced PDD may have a smaller operation count than
the Thomas algorithm.

In the last step, step 5, of the PDD algorithm, the

final solution x is computed by combining the intermedi-
ate results concurrently on each processor:

x(k) = _(k) _ Y2k - I v(k) - Y2k w(k)

which requires 4(n-1) sequential operations and 4m

parallel operations if p = n/m processors are used. The

PDD algorithm drops off the first element of w, w0 and

the last element of v, vm_ j in solving equation (9). In

reference 2, we showed that, for symmetric Toeplitz trid-

iagonal systems (see eq. (14)), we have

l n=O1 b2i, b2i/(_b) ..... (_b),n - 1
v = _.(a+b b 2i) i=o

So, when m is large enough (see theorem 1

for quantitative measurement), we may drop off

vi, i=j,j+l ..... m-l, and wi, i=O, 1 ..... j-l, for

some integerj > 0, while maintaining the required accu-

racy. If we replace vi by _i, where _i = vi, for
i=0,1 ..... j-l, vi = 0, for i=j ..... m-l; and

replace w by &, where wi = wi for i =j ..... m - 1, and
wi = 0, for i = 0, 1 ..... j - 1; and use _, _, in step 5, we
have

Step 5':

(
Ax(k) = [_,l_,] / Y2k-I I

Y2k )
x(k) = j(k)_Ax(k) (13)

It only requires 4 j parallel operations. Replacing step 5
P

of the PDD algorithm by step 5', we get the reduced PDD

algorithm. The key question for the reduced PDD algo-

rithm is how to find the smallest integer j > 0 that main-
tains the required accuracy.



4.0. Accuracy Analysis

The PDD algorithm reduces the communication from global to local. In addition to the reduced communication, the
reduced PDD algorithm further reduces the computation. The PDD and reduced PDD algorithms are efficient because
they have truncated communication and computation. However, this dropping may lead to an inaccurate solution. Thus,
an accuracy study is essential in applying the PDD algorithm. Some preliminary study of the accuracy of the PDD algo-
rithm has been done (refs. 5 and 13); however, the study is for general cases and only provides sufficient conditions to
guarantee a given accuracy. Unfortunately, the conditions given in references 5 and 13 are difficult to verify, and the
accuracy bound given is quite loose. A practical, tight error bound is given in reference 2 for a class of tridiagonal sys-
tems, symmetric Toeplitz tridiagonal (STT) systems. A matrix is Toeplitz if its entries along each diagonal are the same.
As a special class of tridiagonal systems, Sq'q_systems arise in many applications. For instance, the discretization matri-
ces of the compact scheme (ref. 4) are STF systems. In this section, we extend the recent accuracy analysis on STT sys-
tems to the reduced PDD algorithm.

The accuracy analysis of the reduced PDD algorithm is three-fold: first we study the decay rate of the decaying

elements v_')__1, W(oi)(O < i < p - 1); second, we study the influence of dropping v_ )_1, W(oi)(O < i < p- 1) on the final
solution, which is the accuracy analysis of the PDD algorithm; and third, the truncation of computation is studied, based
on the accuracy analysis of the PDD algorithm. The accuracy analysis of the PDD algorithm gives the error bound of the
reduced PDD algorithm. The error bound of the reduced PDD algorithm is a recent result. See the following analysis.

A symmetric Toeplitz tridiagonal matrix has the form

A _.

Let a and b be the real solutions of

= lL_t,_.] = _.11,c, II (14)

b+a = c, boa= 1 (15)

where c is the diagonal element of matrix [1, c, 1] given by equation (14). Because we assume Icl > 2, we can further
assume that Ibl < 1 and lal > 1. For decay rate we have the result (ref. 2),

Ivm_ll bm,lwol b 

which leads to theorem 1.

Theorem 1: For any diagonal-dominant, symmetric Toeplitz tridiagonal matrix, A = [_,, 1a, _.l tf bm- l/a is less than
machine accuracy, where a and b are the solutions of equation (15), the PDD algorithm approximates the true solution
to within machine accuracy.

Theorem 1 states that, if vm _ |, wo are less than machine accuracy, the PDD algorithm gives a satisfactory solution.
In most scientific applications, the accuracy requirement is much weaker than machine accuracy. We need to study how

the decay rate of Vra_ 1, Wo influences the accuracy of the final solution. Let x be the exact solution of equation (1) and
let x* be the corresponding final solution of the PDD algorithm. We have the error bound of the PDD algorithm in l 1

norm (ref. 2):

IIx-x*ll _ Ibtm (16)
Ilxll (1 -Ibl)(lal- 1)

Let _, _ be the vectors defined in equation (13), _' be the corresponding matrix in equation (6), consisting of all the

2(p - 1) vectors, and let x" be the solution of the reduced PDD algorithm. Then

x' = A-ld-_4-1{/(I + ET_4-1V)ETf_-Id



similar to the accuracy analysis of the PDD algorithm (ref. 2), we let y = (! + ETa4 -1V)ETA-id. By equation (4) and
equation (55) in reference 2,

x'-x* = (,4-1_'-/_-lV)y = (_4-1k'- _4-1V)E Tx

Therefore, for a given integerj > 0,

FIxll

m-I

= _,(a + blm-lb2i)i=0 i_=j (-b)i(ll-b2(m-i))b2

Since

_j bi(l_b2(m_i)) < l__._lli_=jlbli+ ib[2m_ i 1 !blJ(l_lblm) _ - '+1i=' l-b2 -[1 i=j -11 -b21 1"-'_'] +lbl'l

_ IlblJ(l _lblm)+lbl.,(l_lbl_-j+l)]

[1- b21(l -tbl)

IIx'-x*lt < _ I I-b2 " tblJ(1-[blm)+lb[m(l-tblm-J+]) < IblJ+lblmIlxll _ b2(m + i) 1(1 - b2)t(1 - Ibl) - Ik(lal - 1 )l

By inequality (16), inequality (18) gives the error bound of the reduced PDD algorithm.

IIx-x'll_< 41x-x*ll+ )Ix*-x'tl
114 Ilxlt llxfr

< [b]m + IblY+ Ibl m

- ( /1 I_,(lal-l)l
_. I_1 -1 b_(1 - b2m_) (lal - 1)

1 - b 2(m + 1)

For a given error tolerance e > O, the right side of inequality (18)

[blm IblJ+ [bl'n
+

I_()at - 1)1

_,0_,]- b_(1-b2m_)](]aI-l)
1 -b 2(m+ !) ,_

<E

if and only if

j>

Iblm ,,{1• ,,j
loglbl

When _. < 1

,,x_x,,,<_,o (1_ __1_ ,_,,Ilxll -I_.l(_-]-- 1) IX] Ibl I_l(]-d]-- l)

(17)

(18)

(19)

5



and we get a simpler inequality for the minimal numberj

1
logl_.l(lai- 1 )Ie-IblmlLl(lal-1 )(1 4 i_.l- Ib])l

J > log Ibl (20)

When ]b"] is less than machine accuracy, inequality (19) becomes the same as inequality (20), and we have an even

simpler formula:

j > logl_.l(lal - 1 )e
ioglbl (21)

Inequality equation (21) gives a lower bound of the number of variables that need to be modified in equation (13) for a

given error tolerance E > 0 Usually, j is quite small For instance, when error tolerance E equals 10 --4, j equals either 10

1 1
or 7 when _., the magnitude of the off diagonal elements, equals _ or _, respectively, the diagonal elements being equal

to 1 The integerj reduces to 4 for 0 < _. < 1
--9"

5.0. Experimental Results

The PDD and the reduced PDD algorithms were

implemented on the 48-node IBM SP2 and 72-node Intel

Paragon available at Langley Research Center Both the

SP2 and Paragon machines are distributed-memory

parallel computers that adopt messagepassing communi-

cation paradigms and support virtual memory Each pro-

cessor (node) of the SP2 is either functionally equivalent

to a reduced instruction set computer (RISC) System/
6000 desktop system (thin node) or a RISC System/6000

deskside system (wide node) The Paragon XP/S super

computer uses the i860 XP microprocessor that includes
a RISC integer core processing unit and three separate

on-chip caches for page translation, data, and instruc-

tions The Langley SP2 has 48 wide nodes with

128 Mbytes local memory and peak performance of 266

million floatingpoint operations per second (MFLOPS)

each In contrast, the Langley Paragon has 72 nodes with
32 Mbytes of local memory and peak performance of

75 MFLOPS each The heart of all distributed-memory

parallel computers is the interconnection network that

links the processors together The SP2 high-performance
switch is a multistage packetswitched Omega network

that provides a minimum of four paths between any pair

of nodes in the system The Intel Paragon processors are
connected in a two-dimensionai (2-D) rectangular mesh

topology The diameter of the 2-D mesh topology

increases with the number of processors Communi-

cation delay on a message-passing distributed-memory

machine usually can be modeled by using two parame-

ters, the latency (start time) _ and transmission rate (in
terms of transmission time per byte) 13 For the SP2, the

latency is 30 lasec and transmission rate is 2 I.tsec For

Paragon, the latency is 46 I.tsec and transmission rate is

6 _tsec

Table 1 gives the computation and communication

count of the PDD algorithm The best conventional

sequential algorithm for the LU decomposition method

Table 1 Computation and Communication Counts of PDD Algorithm

PDDBest

System Matrix sequential Computation Communication

Nonperiodic 8n - 7 17n - 4 2c_+ 12[_
P

Single

Periodic 14n- 16 17n--4 2o_+ 12[_
P

Nonperiodic (5n-3)-nl (9p+l).nl (2cx+8nl-_)
Multiple

right sides
/ _ \

Periodic (Tn- 1)..1 _9n+ l_-.! (2_+8nl -_)

kP 7



for tridiagonal systems is the Thomas algorithm (ref. 14).
For most distributed-memory computers, the time to

communicate with nearest neighbors varies linearly with

problem size. Let S be the number of bytes to be trans-
ferred. Then the transfer time to communicate with a

neighbor can be expressed as a + SI_. Assuming 4 bytes

are used for each real number, steps 3 and 4 of the PDD

and reduced PDD algorithm take e_+ 8[3 and _ +4[3

time, respectively, on any architecture that supports sin-

gle array topology. Tridiagonal systems arising in both

ADI and compact scheme methods, which are two

widely used methods in CFD applications, are multiple

right-side systems. They are usually "kernels" in much

larger codes. The computation and communication

counts for solving multiple right-side systems are listed
in table 1, in which the factorization of matrix ,4 and

computation of Y are not considered (see eqs. (5) and (6)
in Section 2). Parameter nl is the number of right-hand

sides. Note that, for multiple right-side systems, the com-

munication cost increases with the number of right-hand

sides. If the boundary conditions are periodic, the tridiag-

onal systems arising in CFD applications are periodic

tridiagonal systems. As shown in reference 2, the PDD

algorithm, and consequently the reduced PDD algorithm,
can be extended to solve periodic tridiagonal systems as

well. Table 1 also lists computing and communication

counts for solving periodic systems.

Table 2 gives the computation and communication
counts of the reduced PDD algorithm. As for the PDD

algorithm, it has the same parallel computation and com-
munication counts for both periodic and nonperiodic sys-

tems. The computational saving of the reduced PDD

algorithm is not only in step 5, the final modification

step, but also in other steps. Because we only need j ele-
ments of vectors v and w for the final modification in the

reduced PDD algorithm (eq. (13) in section 3), we only

need to computej elements for each column of V in solv-

ing equation (6). The integer j is given by equations (19),

Table 2. Computation and Communication Counts of Reduced
PDD Algorithm

Reduced PDD

System Computation Communication

Single 11n + 6j - 4 2_ + 1213
P

Multiple (5p+4j+l). nl (2ct+ 8nl. 13)right sides

(20), or (21), depending on the particular circumstance.

Notice that, when j < n/2, the reduced PDD algorithm

has a smaller operation count than that of the Thomas

algorithm for periodic systems with multiple right-hand
sides.

While the accuracy analyses given in this study are

for Toeplitz tridiagonal systems, the PDD algorithm and
the reduced PDD algorithm can be applied for solving

general tridiagonai systems. The computation counts

given in tables 1 and 2 are for general tridiagonal sys-

tems. For symmetric Toeplitz tridiagonal systems, a fast

method proposed by Malcolm and Palmer (ref. 15) has a
smaller computation count than the Thomas algorithm

for systems with single right-hand sides. It requires only

5n + 2k- 3 counts for arithmetic, where k is a decay

parameter, depending on the diagonal dominancy of the

system. Formulas are available to compute the upper and

lower bounds of parameter k (ref. 15). The computation

savings of Malcolm and Palmer's method are in the LU

decomposition. For systems with multiple right-hand
sides, in which the factorization cost is not considered,

the Malcolm and Palmer's method and the Thomas

method have the same computation count. Table 3 gives

the computation and communication counts of the PDD
and reduced PDD algorithms based on Malcolm and

Table 3. Computation and Communication Counts for Symmelric Toeplitz Systems

Parallel AlgorithmBest

Algorithm Matrix sequential Computation Communication

Nonperiodic 5n + 2k - 3 14n- + 2k 2ct + 1213
PDD P

Algorithm
Periodic 1 In + 2k - 12 14n + 2k 2ct + 1213

P

Nonperiodic 5n + 2k - 3 8n + 2k + 6j 20t + 81]
Reduced P

PDD

Algorithm
Periodic 1 In + 2k - 12 8n--+ 2k + 6j 2ct + 813

P



Palmer's algorithm. The computation counts of the two

algorithms are reduced with the fast method used in solv-

ing the subsystems. Table 3 shows the computation and

communication counts for solving systems with a single

right-hand side. For systems with multiple right-hand
sides, the computation counts remain the same as in
tables 1 and 2 for both the PDD and the reduced PDD

algorithms, respectively.

As an illustration of the algorithm and theoretical

results given in previous sections, a sample matrix is

tested here. This sample matrix is a periodic, symmetric,

Toeplitz system

m

1 I-

1 1

1 1 1

1 1 1

which arises in the compact scheme. We have

A = ,1, = _-[1,3,11

1
= -.([b,l,0]xI0, a, 0lx[0,1,bl-AB)

3

where AB is an n x n zero matrix, except that the first ele-

ment on the first row is b, and

3+,_ b- 3-4r5 (23)
_. = _,c = 3, a - 2 ' 2

The reduced PDD algorithm was first implemented

on a Sun workstation with double precision to solve the

tridiagonal system Ax = d for accuracy checking. The

right-side vector d was generated randomly. Figure 1

depicts the accuracy comparison of the reduced PDD

algorithm. The measured and predicted data have been

converted to a common logarithm scale to make the
difference visible. The x-coordinate is the order of

matrix Ai, and the y-coordinate is the relative error in the

l-norm. From figure 1, we can see that the accuracy anal-
ysis provides a very good error bound.

Speedup, one of the most frequently used perfor-

mance metrics in parallel processing, is defined as

sequential execution time over parallel execution time.

0
-2

-4

-10

.9 -12
-14

-16

-18
0

Figure 1.

o Theoretical bound

I I I I I I I I

5 l0 15 20 25 30 35 40
Number of modified variables

Measured and predicted accuracy of reduced PDD
algorithm.

Parallel algorithms often exploit parallelism by sacrific-

ing mathematical efficiency. To measure the true parallel

processing gain, the sequential execution time should be

based on a commonly used sequential algorithm. To dis-

tinguish it from other interpretations of speedup, the

speedup measured versus a commonly used sequential

algorithm has been called absolute speedup (ref. 7).

Another widely used interpretation is the relative

speedup (ref. 7), which uses the uniprocessor execution

time of the parallel algorithm as the sequential time. Rel-
ative speedup measures the performance variation of an

algorithm in terms of the number of processors and is

commonly used in scalability studies. Both Amdahl's

law (ref. 16) and Gustafson's scaled speedup (ref. 17) are

based on relative speedup. In this study, we first use rela-

tive speedup to study the scalability of the PDD and

reduced PDD algorithms; then, we use the absolute

speedup to compare these two algorithms with the con-

ventionally used sequential algorithm.

Because execution time varies with communication/

computation ratio on a parallel machine, the problem size
is an important factor in performance evaluation, espe-

cially for machines supporting virtual memory. Virtual

address space separates the user logical memory from

physical memory. This separation allows an extremely

large virtual memory to be provided (with a much slower

memory access time) on a sequential machine when only

a small physical memory is available. If the problem size

is larger than physical memory, data must be swapped in

from and out to secondary memory, which may lead

to inefficient sequential processing and unreasonably

high speedup. If the problem size is too small, on the

other hand, when the number of processors increases,

the workload on each processor will drop quickly,

which may lead to an extremely high communication/

computation ratio and unacceptably low performance. As

studied in reference 18, the correct choice of initial prob-

lem size is the problem size that reaches the asymptotic

speed, the sustained uniprocessor speed corresponding to



themainmemoryaccess(ref.18).Thenodesof SP2 and

Paragon have different processing powers and local

memory sizes. For a fixed 1024 right sides, following the

asymptotic speed concept, the order of matrix for SP2
was found to be 6400, and the order of matrix for

Paragon was found to be 1600. Figures 2 and 3 show the

measured speedup of the PDD algorithm when the large

problem size n = 6400 is solved on Paragon and the

small problem size n = 1600 is solved on SP2. For

comparison, ideal speedup, where speedup equals p
when p processors are available, is also plotted with the
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Figure 2. Superlinear speedup with large problem size on Intel
Paragon (1024 system of order 6400).

measured speedups. As indicated previously, the large

problem size leads to an unreasonable superlinear

speedup on Paragon, and the small problem size leads to

a disappointingly low performance on SP2.

From the problem size point of view, speedup can be

divided into the fixed-size speedup and the scaled

speedup. Fixed-size speedup fixes the problem size.
Scaled speedup scales the problem size with the number

of processors. Fixed-size speedup emphasizes how much

execution time can be reduced for a given application

with parallel processing. Amdahl's law (ref. 16) is based

on the fixed-size speedup. The scaled speedup concen-

trates on exploring the computational power of parallel

computers for solving otherwise intractable large prob-

lems. Depending on the scaling restrictions of the prob-

lem size, the scaled speedup can be classified as both the

f_ced-time speedup (ref. 17) and the memory-bounded

speedup (ref. 19). As the number of processors increases,

memory-bounded speedup scales problem size to utilize

the associated memory increase. In general, operation

count increases much faster than memory requirement.

Therefore, the workload on each processor will not

decrease with the increase in number of processors in

memory-bounded speedup. Thus, scaled speedup is more

likely to get a higher speedup than that of fixed-size

speedup.

Figures 4 and 5 depict the speedup of the fixed-size

and memory-bounded speedup of the PDD and the

reduced PDD algorithm, respectively, on the Intel Para-

gon. From figures 4 and 5 we can see that the PDD and

the reduced PDD algorithm have the same speedup pat-

tern. This similarity is very reasonable because these two

algorithms share the same computation and communica-

tion pattern. It has been proven that the PDD algorithm,
and therefore the reduced PDD algorithm, are perfectly

scalable, in terms of isospeed scalability (ref. 20), on any
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Figure 3. Inefficient performance with small problem size on SP2
(1024 system of order 1600).
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Figure 4. Measured speedup of PDD algorithm on Intel Paragon
(1024 system of order 1600).
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Figure 5. Measured speedup of reduced PDD algorithm on Intel

Paragon (1024 system of order 1600).
Figure 6. Measured speedup of PDD algorithm on a SP-2 (1024

system of order 6400).

architecture that supports the ring communication net-

work. However, ring communication cannot be embed-

ded in 2-D mesh topologies perfectly unless a wrap-

around is supported. Thus, the communication cost of the

algorithms increases slightly with the increase in the

number of processors. The fact that the memory-bounded

speedups on the Paragon are slightly below the ideal

speedup is very reasonable. The influence of the commu-

nication cost has been reflected in the measured speedup.

Figure 6 demonstrates the speedups of the PDD

algorithm on the SP2 machine. Because the one-to-one

communication of the SP2 multistage Omega network

does not increase with the number of processors, the

PDD algorithm reaches the ideal memory-bounded

speedup. In accordance with the isospeed metric

(ref. 20), the PDD algorithm is perfectly scalable in the

multistage SP2 machine.

Although the PDD and reduced PDD have similar

relative speedup patterns, the execution times of the two

algorithms are very different. The reduced PDD algo-
rithm has a smaller execution time than that of the PDD

algorithm. For periodic systems the reduced PDD algo-

rithm has an even smaller execution time than the con-

ventional sequential algorithm. The timing of the

Thomas algorithm, the PDD algorithm, and the reduced

PDD algorithm on a single node of the SP2 and Paragon

machine are listed in table 4. The problem size for all

algorithms on SP2 is n = 6400 and nl = 1024 and on
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Figure 7. Speedup of PDD algorithm over Thomas algorithm

(! 024 system s of order 1600).
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Table 4. Sequential Timing (in seconds) on Paragon and SP2

Machines

Figure 8. Speedup of reduced PDD algorithm over Thomas algo-

rithm (1024 systems of order 1600).

Size

Paragon 1600

SP2 6,100

Reduced

Thomas PDD PDD

algorithm algorithm algorithm

0.8265 0.9026 0.6432

0.7387 0.856 0.5545

Paragon is n = 1600 and n 1 = 1024. The measured results

confirm the analytical results given in tables 1 and 2.

Figures 7 and 8 show the speedup of the PDD and

reduced PDD algorithms over the conventional sequen-

tial algorithm, the Thomas algorithm, respectively. The

10



PDDalgorithmincreasescomputationcountfor high
parallelism.The reducedPDD reducescomputation
countbytakingadvantageof diagonaldominance.Com-
paredto the Thomasalgorithm,while the absolute
speedupof thePDDalgorithmis worsethanitsrelative
speedup,thereducedPDDalgorithmhasabetterabso-
lute speedupthanits relativespeedup.Thereduced
PDDalgorithmachievesasuperlinearspeedupoverthe
Thomasalgorithm.Experimentalresultsconfirmthatthe
reducedPDDalgorithmmaintainsthegoodscalabilityof
thePDDalgorithmanddeliversanefficientperformance
in termsof executiontimeaswell.

6.0. Concluding Remarks

Computational fluid dynamics (CFD) constantly

demands higher computing power than is currently avail-

able. With current technology, the feasible approach to

continually increasing computing power seems to be

through parallel processing: construct a computer that

consists of hundreds and thousands of processors

working concurrently. Parallel computers have become

commercially available; however, unlike their sequential

counterparts, efficient parallel algorithms require a high

degree of parallelism and low cost of communication.

Tridiagonal systems arise in many CFD applications.

They are usually kernels in much larger codes. Although

multiple tridiagonal systems are available in the larger

codes, in many situations it is often more efficient to use

a parallel tridiagonal solver for these systems than to

remap data among processors to be able to perform a

serial solve, especially for distributed memory machines

where communication cost is high.

Experimental and theoretical results show that both

the PDD and reduced PDD algorithms are efficient and

scalable, even for systems with multiple right sides. For

periodic systems, as confirmed by our implementation

results, the reduced PDD algorithm even has a smaller

sequential execution time than that of the best sequential

algorithm. The two algorithms are good candidates for

parallel computers.

The accuracy analysis and implementation given in

this study are for Toeplitz systems. The PDD and

reduced PDD algorithms, however, are applicable for

general tridiagonal and narrow band linear systems. The

common merit of these two algorithms is the minimum

communication required, which makes them even more

valuable in a distributed computing environment, such

as the environment of a cluster of a network of

workstations.

NASA Langley Research Center

Hampton, VA 23681-0001

March 19, 1996
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